我国的超导产业发展更偏向高温超导
整体而言,我国在超导材料领域的研究进展基本与国际同步。其中,低温超导材料、超导电子学应用以及超导电工学应用领域的研究已达到或接近国际先进水平。我国 NbTi 线材性能和性价比已优于发达国家,Nb3Sn 线材综合水平与发达国家相当。
磁约束可控核聚变
磁约束核聚变使用磁场将氘氚等离子体约束在磁场中,并加热到上亿摄氏度,使之发生聚变反应,最常用的约束磁场是托克马克环,由极向磁场和环向磁场组成,用于约束和加热等离子体。国内主要是等离子体所(合肥)和中核的西南物理研究院(585,成都)在做大型托卡马克装置。等离子体所(合肥)一代先进装置 HT-7,前身是苏联在七十年代投入使用的超导托卡马克 T-7,在升级改造数年后于 1995 年投入使用。二代先进装置 EAST,在 HT-7 的基础之上设计建造而成。西南物理研究院(成都)早期装置 HL-1M 一代先进装置 HL-2A,前身是德国的装置 ASDEX,2002 年投入使用,二代先进装置 HL-2M。
可控核聚变的历史来由及意义
托卡马克(Tokamak)是一环形装置,通过约束电磁波驱动,创造氘、氚实现聚变的环境和超高温,并实现人类对聚变反应的控制。它的名字Tokamak来源于环形(toroidal)、真空室(kamera)、磁(magnet)、线圈(kotushka)。最初是由位于苏联莫斯科的库尔恰托夫研究所的阿齐莫维齐等人在20世纪50年代发明的。
受控热核聚变在常规托卡马克装置上已经实现。但常规托卡马克装置体积庞大、效率低,突破难度大。上世纪末,科学家们把新兴的超导技术用于托卡马克装置,使基础理论研究和系统运行参数得到很大提高。据科学家估计,可控热核聚变的演示性的聚变堆将于2025年实现,商用聚变堆将于2040年建成。商用堆建成之前,中国科学家还设计把超导托卡马克装置作为中子源,用于环境保护、科学研究及其它途径。这一设想获得国内外专家较高评价。
包括磁体(环向场磁体及极向场磁体)、真空室及其抽气系统、供电系统、控制系统(装置控制和等离子体控制)、加热与电流驱动系统(中性束和微波)、喷气及弹丸注入系统、偏滤器及孔阑、诊断和数据采集与处理系统、包层系统、氚系统、辐射防护系统、遥控操作与维修系统等部件(子系统)。虽然强磁场能提高约束性能,但受工程技术和材料限制,环向磁场一般为2~8T;为了获取稳定的核聚变能输出,托卡马克聚变堆最终要采用超导磁体(稳态运行要求),为此要增加杜瓦、冷屏和低温制冷系统。为将等离子体加热至需要的温度,大型装置的总加热功率为几十兆瓦,国际热核实验堆装置的加热功率为73~130MW。
相比其他方式的受控核聚变,托卡马克拥有不少优势。1968年8月在苏联新西伯利亚召开的第三届等离子体物理和受控核聚变研究国际会议上,阿齐莫维齐宣布在苏联的T-3托卡马克上实现了电子温度1keV,质子温度0.5keV,nτ=10的18次方m-3.s,这是受控核聚变研究的重大突破,在国际上掀起了一股托卡马克的热潮,各国相继建造或改建了一批大型托卡马克装置。其中比较著名的有:美国普林斯顿大学由仿星器-C改建成的ST Tokamak,美国橡树岭国家实验室的奥尔马克,法国冯克奈-奥-罗兹研究所的TFR Tokamak,英国卡拉姆实验室的克利奥(Cleo),西德马克斯-普朗克研究所的Pulsator Tokamak。
EAST位于中国合肥,是目前为止,超托卡马克反应体部分,唯一能给ITER提供实验数据的装置,他的结构和应用的技术与规划中的ITER完全一样,没有的仅仅是换能部分。EAST解决了几个重要问题:第一次采用了非圆型垂直截面,目的是在不增加环形直径的前提下增加反应体的体积,提高磁场效率。第一次全部采用了液氦无损耗的超导体系。液氦是很贵的,只有在线圈材料上下功夫,尽量少用液氦,同时让液氦可以循环使用,尽量减少损耗的系统才可能投入实用。此外,EAST还是世界上第一个具有主动冷却结构的托卡马克,它的第一壁是主动冷却的,连接的是一个大型冷却塔,它的冷却水可以保证在长时间运行后将反应产生的热量带走,维持系统的温度平衡,一方面是为真正实现稳定的受控聚变迈出的重要一步,另一方面也是工程化的重要标志——冷却塔换成汽轮机是可以发电的。结合一些相关资料,世界这个领域普遍认为EAST将是第一个能长时间稳定运行的,Q值能达到1的托卡马克装置,当然这可能还要1-2年的时间。就EAST来说,从某种意义上,它就是ITER主反应体大约1/4的一个原型实验装置。
可控核聚变的最新进展
美国能源部2022年12月13日宣布,其下属的劳伦斯利弗莫尔国家实验室科研人员实现了“核聚变点火”,称这一“重大科学突破”将为国防及清洁能源未来发展奠定基础。
美能源部在一份声明中说,12月5日,科研人员在劳伦斯利弗莫尔国家实验室“国家点燃实验设施”进行了历史上首次可控核聚变实验,意味着核聚变实验中产生的能量多于用于驱动核聚变的激光能量。这一实验将为推动清洁能源发展提供宝贵见解,有助于实现零碳经济目标。
核聚变是太阳和恒星的能量来源。在这些星体核心的巨大热量和重力下,氢原子核相互碰撞,聚合成更重的氦原子,并在此过程中释放出大量能量。与其他核反应不同,核聚变不会产生放射性废物。核聚变技术有望为人类提供近乎无限的清洁能源,帮助人类摆脱对化石燃料的依赖。
据美能源部介绍,“国家点燃实验设施”是全球最大、能量最高的激光系统,其使用超强激光束来产生与恒星和巨型行星核心以及核武器内部相当的温度和压力。
美国国家核安全管理局副局长马文·亚当斯介绍说,激光束将大量热量集中在一个微型球形胶囊上,结果是一个过热的等离子体环境,其中反应产生的能量比用于产生它的激光中所包含的能量多,约为1.5倍。
美能源部称,此次核聚变实验中,“国家点燃实验设施”向目标输入了2.05兆焦耳的能量,产生了3.15兆焦耳的聚变能量输出,首次展示了惯性约束核聚变的最基本科学原理。惯性约束核聚变是实现可控核聚变的两大主流方案之一(另一个是磁约束),该技术利用激光的冲击波使得通常包含氘和氚的燃料球达到极高的温度和压力,来引发核聚变反应。
美能源部表示,要实现将方便、可负担的惯性约束核聚变技术应用于为家庭和企业发电的目标,仍需要进行大量先进的科学和技术实验。美能源部正在重启一项惯性约束核聚变发展计划,将与私营部门协调合作,推动核聚变商业化的快速发展。
正所谓:黄河之水天上来,奔流到海不复回,拥有股牛牛,题材不用愁,我国已经有不少A股企业开始参与可控核聚变的建设当中,想要了解更多A股与尖端科技的零距离,欢迎点击:股牛牛——题材宝——电力——核电——可控核聚变了解最专业的科技与最精准的财经信息。
998题材宝(1年):https://uppay.upchina.com/unifiedpay/13856344ad7e7c136983c7dabc6bc82f?ch=61133
1280题材宝(2年):https://uppay.upchina.com/unifiedpay/77ae3e4c67a489f109c96f1605dc5dc0?ch=61133
主题:题材高位分歧,注意节奏